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Photochemistry of a CycIohex-3-enone. Evidence for a 
Stepwise Pathway in an Oxadi-x-methane 
Rearrangement 

Sir: 

Triplet excited /3,7-unsaturated ketones undergo an 
oxadi-ir-methane (ODPM) rearrangement involving a for­
mal 1,2 (a -* /3) acyl shift and three-ring formation 
through a —* 7 bonding.1 One of the early examples was re­
ported for Au9-2-octalone.2 We describe now a study with 
the related cyclohexenone (—)-l designed to differentiate 
between the three currently debated principal mechanisms 
for the ODPM rearrangement which can be applied to the 
formation of products endo-5 and exo-6. These mecha­
nisms are summarized in Scheme I:3 (i) a-Cleavage to the 
achiral diradical 2 which recombines to racemic endo and 
exo products; (ii) an alternative stepwise mechanism pro­
ceeding via intermediates of type 3 and/or 4 furnishing 
endo and exo products of identical C-I configuration; (iii) a 
photochemically allowed concerted a2a + x 2 a cycloaddition 
leading to endo and exo products with opposite C-1 config­
uration.4 The products 5 and 6 formed by the concerted 
mechanism iii would retain the enantiomeric purity of the 
starting ketone. In a reaction course of type ii a partial loss 
of the initial enantiomeric purity may, but need not, result 
for 5 and 6 depending on the extent to which certain of the 
steps involved are subject to stereoselective control.5 

Irradiation of ketone rac-1 with 254-nm light in metha­
nol led to a specifically -K ~* ir* induced 1,3-allylic shift of 
the dimethoxymethyl substituent6 and formation of I.7,8 

Triplet sensitization of 1, using acetone solution and 254 
nm, furnished a ca. 2:1 ratio of the cyclopropyl ketones 5 
and 6 (20% yield at full conversion and after chromato­
graphic separation). Separate photolyses of 5 and 6 under 
the conditions of their formation resulted in the decomposi­
tion of both compounds to as yet unknown products while 
the two isomers did not interconvert and their ratio re­
mained constant. The endo configuration of the dimethoxy-

Scheme I 

R = CH(OCH3)2 

Scheme II 

endo-(1/?)-5 

X b — Ox^o 
7 R 

1 K-)-(S)! 

/ T" s e n s \ 

H M R 

9 X= KOCH3 5 X» O 6 
10 X»0 I(-)-(1S,9S)l [(-)-(1S,9*)l 

8 X » H1OH 

R = CH(OCH3)J 

methyl group in 5 was established by reduction with 
NaBFU and oxalic acid-catalyzed cyclization of the result­
ing hydroxyacetal 8 in methanol to 9. Jones oxidation of 9 
gave lactone 10, ir 1775 c m - 1 (in CCI4). The overall yield 
for 5 —• 10 was 44%. Application of the same reaction se­
quence to 6 failed to give an analogous cyclization. 

Compound ( - ) - l , CD A<;max
297 +3.3,9 of 54% enantio­

meric purity10 was obtained as follows: Fractional crystalli­
zation of the hydrazide prepared from (—)-7V-aminomenth-
yl carbamate" and the carboethoxy precursor of 7 gave 
partially resolved (+)-7, Aemax

340 +3.3.9 Photorearrange-
ment of this compound into (—)-l occurred without loss of 
enantiomeric purity.12 

The two ODPM rearrangement products, which were 
isolated after a ca. 90% conversion of (—)-l in the acetone-
sensitized photolysis, were optically active and the enan­
tiomeric purities were 42% for recovered 1 and 48% each 
for 5 and 6. The CD exhibited identical negative Cotton ef­
fects, A«max

296 —1.3,9 for both the endo and exo isomer, 
(-)-(15,95')-5 and {-)-(\S,9R)-6, respectively.12 

The partial racemization in the order (—)-l > (—)-5 = 
(—)-6 during the photolysis must be due mostly to a process 
competing with the ODPM rearrangement, probably to re­
versible a-cleavage (1 <=± 2). Similar acetone-sensitized epi-
merizations have been observed previously.18,19 The essen-
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tially full retention of enantiomeric purity during the rear­
rangement and the formation of endo and exo products with 
identical C-I configuration eliminate the, a priori least fa­
vorable,20 a-cleavage (path i) entirely22 and the allowed 
concerted cycloaddition (path iii) at least as the major re­
action course. There remains a stepwise mechanism of type 
ii which alone, irrespective of the detailed pathway, can ac­
count for the formation of the major product 5 (and equally 
well also for 6), barring its unlikely generation in a single 
a2s + w2a step which is forbidden in the terms of orbital 
symmetry control.4'24 

The high stereoselectivity of this reaction deserves some 
speculative comment although a definitive interpretation 
must await precise knowledge of the intermediate(s) in­
volved. Solvent dependent uv and NMR spectral changes25 

indicate that the ground-state conformational equilibrium 
of 1 in a polar medium favors the half-chair or boat forms 
with the dimethoxymethyl substituent in the (pseudo)equa-
torial position. The rearrangement to (IS)-S and -6 re­
quires the same conformation of triplet 1. It would in fact 
be acceptable to assume that ground and excited states 
adopt similar conformational preferences in similarly polar 
solvents. 

A stepwise reaction course corresponding to ii, as estab­
lished now as the most likely mechanism24 for (the major 
part of) the ODPM rearrangement of 1, need not be general 
to similar transformations of any other /3,7-unsaturated ke­
tone. Nevertheless, it is compatible with all other examples 
which have been studied in some detail.23'26 Only two'9'23e 

of those cases, which conform to the mechanistic expecta­
tions of an allowed a2 + T2 cycloaddition, require as an ad­
ditional condition that a single intermediate corresponding 
to 3 be formed and converted directly to product with inver­
sion at the /3-carbon. 
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Modes of Acid Catalysis in the Aromatization 
of Arene Oxides 

Sir: 

The aromatization of arene oxides has previously been 
shown to occur by HsO+ (^H) and spontaneous or water 
(ko) catalysis (eq I).1 Both mechanisms involve rate deter-

(1) 

mining carbocation formation when the migrating group 
(X) is H.2 We report herein results which establish that the 
ring opening reaction is subject to general acid catalysis 
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